Filters
Question type

Study Flashcards

For the pair of functions, find the indicated domain. - f(x)=3x2,g(x)=3x+7f ( x ) = 3 x - 2 , g ( x ) = \frac { 3 } { x + 7 } Find the domain of f+g A) (,3) or (3,)( - \infty , - 3 ) \text { or } ( - 3 , \infty ) B) (,)( - \infty , \infty ) C) (0,)( 0 , \infty ) D) (,7) or (7,)( - \infty , - 7 ) \text { or } ( - 7 , \infty )

Correct Answer

verifed

verified

The graph of the function f is shown below. Match the function g with the correct graph. - g(x) =12f(x) g ( x ) = - \frac { 1 } { 2 } f ( x )  The graph of the function f is shown below. Match the function g with the correct graph. - g ( x )  = - \frac { 1 } { 2 } f ( x )      A)     B)    C)    D)


A)  The graph of the function f is shown below. Match the function g with the correct graph. - g ( x )  = - \frac { 1 } { 2 } f ( x )      A)     B)    C)    D)
B)  The graph of the function f is shown below. Match the function g with the correct graph. - g ( x )  = - \frac { 1 } { 2 } f ( x )      A)     B)    C)    D)
C)  The graph of the function f is shown below. Match the function g with the correct graph. - g ( x )  = - \frac { 1 } { 2 } f ( x )      A)     B)    C)    D)
D)  The graph of the function f is shown below. Match the function g with the correct graph. - g ( x )  = - \frac { 1 } { 2 } f ( x )      A)     B)    C)    D)

Correct Answer

verifed

verified

Write an equation for the piecewise function. -Write an equation for the piecewise function. -  A)    B)    C)    D)


A) Write an equation for the piecewise function. -  A)    B)    C)    D)
B) Write an equation for the piecewise function. -  A)    B)    C)    D)
C) Write an equation for the piecewise function. -  A)    B)    C)    D)
D) Write an equation for the piecewise function. -  A)    B)    C)    D)

Correct Answer

verifed

verified

Find the requested function value. -Find the requested function value. -  Find   A)  -16  B)  -36  C) 324 D)  Find Find the requested function value. -  Find   A)  -16  B)  -36  C) 324 D)  A) -16 B) -36 C) 324 D) Find the requested function value. -  Find   A)  -16  B)  -36  C) 324 D)

Correct Answer

verifed

verified

Determine algebraically whether the function is even, odd, or neither even nor odd. - f(x) =3x3f ( x ) = 3 \sqrt [ 3 ] { x }


A) Even
B) Odd
C) Neither

Correct Answer

verifed

verified

For the pair of functions, find the indicated sum, difference, product, or quotient. -f(x) =5+x, g(x) =4|x| Find (g/f) (x) .


A) 4x5+x4 | x | - 5 + x
B) 4x5+x\frac { 4 | x | } { 5 } + x
C) 4x5+x\frac { 4 | x | } { 5 + x }
D) 5+x4x\frac { 5 + x } { 4 | x | }

Correct Answer

verifed

verified

The given point is on the graph of y = f(x). Find a point on the graph of y = g(x). -g(x)=f(x-1) ;(4,14) A) (4,15) B) (3,14) C) (5,14) D) (4,13)

Correct Answer

verifed

verified

Using the graph, determine any relative maxima or minima of the function and the intervals on which the function is increasing or decreasing. Round to three decimal places when necessary. - f(x) =12x3+12x2x+1f ( x ) = \frac { 1 } { 2 } x ^ { 3 } + \frac { 1 } { 2 } x ^ { 2 } - x + 1  Using the graph, determine any relative maxima or minima of the function and the intervals on which the function is increasing or decreasing. Round to three decimal places when necessary. - f ( x )  = \frac { 1 } { 2 } x ^ { 3 } + \frac { 1 } { 2 } x ^ { 2 } - x + 1     A)  relative maximum:  2.056  at  x=-1.215 ; relative minima:  0.684  at  x=0.549  and 1 at  x=0 ; increasing  (-1.215,0.549)  ; decreasing  ( - \infty , - 1.215 )  , ( 0.549 , \infty )   B)  relative maximum:  0.684  at  x=0.549 ; relative minimum:  2.056  at  x=-1.215 ; increasing  (-1.215,0.549)  ; decreasing  ( - \infty , - 1.215 )  , ( 0.549 , \infty )   C)  no relative maxima or minima; increasing  ( \rightarrow \infty , - 1.215 )  , ( 0.549 , \infty )   decreasing  (-1.215,0.549)   D)  relative maximum:  2.056  at x=-1.215 ; relative minimum:  0.684  at  x=0.549 ; increasing  ( \infty , - 1.215 )  , ( 0.549 , \infty )   decreasing  (-1.215,0.549)


A) relative maximum: 2.056 at x=-1.215 ; relative minima: 0.684 at x=0.549 and 1 at x=0 ; increasing (-1.215,0.549) ; decreasing (,1.215) ,(0.549,) ( - \infty , - 1.215 ) , ( 0.549 , \infty )
B) relative maximum: 0.684 at x=0.549 ; relative minimum: 2.056 at x=-1.215 ; increasing (-1.215,0.549) ; decreasing (,1.215) ,(0.549,) ( - \infty , - 1.215 ) , ( 0.549 , \infty )
C) no relative maxima or minima; increasing (,1.215) ,(0.549,) ( \rightarrow \infty , - 1.215 ) , ( 0.549 , \infty ) decreasing (-1.215,0.549)
D) relative maximum: 2.056 at x=-1.215 ; relative minimum: 0.684 at x=0.549 ; increasing (,1.215) ,(0.549,) ( \infty , - 1.215 ) , ( 0.549 , \infty ) decreasing (-1.215,0.549)

Correct Answer

verifed

verified

Graph the function. Use the graph to find any relative maxima or minima. -Graph the function. Use the graph to find any relative maxima or minima. -  A)  Relative minimum of  -4 at x=1  B)  No relative extrema C)  Relative maximum of  -4 at x=0  D)  Relative minimum of  -4 at x=0


A) Relative minimum of -4 at x=1
B) No relative extrema
C) Relative maximum of -4 at x=0
D) Relative minimum of -4 at x=0

Correct Answer

verifed

verified

Solve. -The time T necessary to make an enlargement of a photo negative varies directly as the area A of the enlargement. If 315 seconds are required to make a 5 -by- 7 enlargement, find the time required for a 6 -by- 10 enlargement.


A) 480 sec
B) 660 sec
C) 600 sec
D) 540 sec

Correct Answer

verifed

verified

The graph of the function f is shown below. Match the function g with the correct graph. -g(x) = 2f(x) The graph of the function f is shown below. Match the function g with the correct graph. -g(x) = 2f(x)     A)     B)    C)    D)


A) The graph of the function f is shown below. Match the function g with the correct graph. -g(x) = 2f(x)     A)     B)    C)    D)
B) The graph of the function f is shown below. Match the function g with the correct graph. -g(x) = 2f(x)     A)     B)    C)    D)
C) The graph of the function f is shown below. Match the function g with the correct graph. -g(x) = 2f(x)     A)     B)    C)    D)
D) The graph of the function f is shown below. Match the function g with the correct graph. -g(x) = 2f(x)     A)     B)    C)    D)

Correct Answer

verifed

verified

Solve. -At Allied Electronics, production has begun on the X-15 Computer Chip. The total cost function is given by C(x)=7 x+14 and the total profit function is given by P(x)=0.3x2+51x14P ( x ) = - 0.3 x ^ { 2 } + 51 x - 14 where x represents the number of boxes of computer chips produced. The total revenue function, R(x) , is such that R(x)=C(x)+P(x) . Find R(x) . A) R(x)=58x+0.3x2R ( x ) = 58 x + 0.3 x ^ { 2 } B) R(x)=58x0.3x2R ( x ) = 58 x - 0.3 x ^ { 2 } C) R(x)=57x0.6x2R ( x ) = 57 x - 0.6 x ^ { 2 } D) R(x)=60x0.3x2R ( x ) = 60 x - 0.3 x ^ { 2 }

Correct Answer

verifed

verified

For the pair of functions, find the indicated sum, difference, product, or quotient. - f(x)=x4,g(x)=4x2+16x4f ( x ) = x - 4 , g ( x ) = - 4 x ^ { 2 } + 16 x - 4 Find (fg)(3) A) -53 B) -8 C) -280 D) 56

Correct Answer

verifed

verified

The graph of the function f is shown below. Match the function g with the correct graph. -The graph of the function f is shown below. Match the function g with the correct graph. -  A)     B)    C)    D)


A) The graph of the function f is shown below. Match the function g with the correct graph. -  A)     B)    C)    D)
B) The graph of the function f is shown below. Match the function g with the correct graph. -  A)     B)    C)    D)
C) The graph of the function f is shown below. Match the function g with the correct graph. -  A)     B)    C)    D)
D) The graph of the function f is shown below. Match the function g with the correct graph. -  A)     B)    C)    D)

Correct Answer

verifed

verified

Determine the domain and range of the function. - Determine the domain and range of the function. -  A)  domain:  ( - \infty , - 5 ]  range:  ( - \infty , 1 ]  B)  domain:  ( - \infty , \infty )   range:  ( - \infty , 1 ]  C)  domain:  ( - \infty , \infty )  ;  range:  ( - \infty , \infty )   D)  domain:  ( - \infty , - 5 )  \cup ( - 5 , \infty )   range:  ( - \infty , 1 )  \cup ( 1 , \infty )


A) domain: (,5]( - \infty , - 5 ] range: (,1]( - \infty , 1 ]
B) domain: (,) ( - \infty , \infty ) range: (,1]( - \infty , 1 ]
C) domain: (,) ;( - \infty , \infty ) ; range: (,) ( - \infty , \infty )
D) domain: (,5) (5,) ( - \infty , - 5 ) \cup ( - 5 , \infty ) range: (,1) (1,) ( - \infty , 1 ) \cup ( 1 , \infty )

Correct Answer

verifed

verified

Answer the question. -How can the graph of f(x)=(x1)2+6f ( x ) = - ( x - 1 ) ^ { 2 } + 6 be obtained from the graph of y=x2?y = x ^ { 2 } ? A) Shift it horizontally 1 units to the left. Reflect it across the x -axis. Shift it 6 units up. B) Shift it horizontally 1 units to the right. Reflect it across the x -axis. Shift it 6 units up. C) Shift it horizontally 1 units to the right. Reflect it across the y-axis. Shift it 6 units up. D) Shift it horizontally 1 units to the right. Reflect it across the y-axis. Shift it 6 units down.

Correct Answer

verifed

verified

Find an equation of variation for the given situation. - p varies directly as q , and p=1 when q=13.q = \frac { 1 } { 3 } . A) p=13qp = \frac { 1 } { 3 } q B) p=4 q C) p=3 q D) p=2 q

Correct Answer

verifed

verified

Showing 141 - 157 of 157

Related Exams

Show Answer