Filters
Question type

Study Flashcards

Find the absolute extreme values of the function on the interval. - h(x) =12x+4,2x4h ( x ) = \frac { 1 } { 2 } x + 4 , - 2 \leq x \leq 4


A) absolute maximum is 2- 2 at x=4x = - 4 ; absolute minimum is 4- 4 at x=2x = 2
B) absolute maximum is 2- 2 at x=2x = - 2 ; absolute minimum is 3 at x=4x = 4
C) absolute maximum is 2- 2 at x=4x = 4 ; absolute minimum is 3 at x=2x = - 2
D) absolute maximum is 6 at x=4x = 4 ; absolute minimum is 3 at x=2x = - 2

Correct Answer

verifed

verified

Find the largest open interval where the function is changing as requested. -Increasing y=(x29) 2\quad y = \left( x ^ { 2 } - 9 \right) ^ { 2 }


A) (,0) ( - \infty , 0 )
B) (3,0) ( - 3,0 )
C) (3,) ( 3 , \infty )
D) (3,3) ( - 3,3 )

Correct Answer

verifed

verified

Show that the function has exactly one zero in the given interval. - r(θ)=5cotθ+1θ2+6,(0,π)r ( \theta ) = 5 \cot \theta + \frac { 1 } { \theta ^ { 2 } } + 6 , ( 0 , \pi )

Correct Answer

verifed

verified

The function blured image is continuous on the open ...

View Answer

Determine all critical points for the function. - f(x) =x312x+5f ( x ) = x ^ { 3 } - 12 x + 5


A) x=2x = - 2 and x=2x = 2
B) x=2x = 2
C) x=2x = - 2
D) x=2,x=0x = - 2 , x = 0 , and x=2x = 2

Correct Answer

verifed

verified

Find all possible functions with the given derivative. - y=3t2ty ^ { \prime } = 3 t - \frac { 2 } { \sqrt { t } }


A) 3t24t+C3 t ^ { 2 } - 4 \sqrt { t } + C
B) t22t+Ct ^ { 2 } - 2 \sqrt { t } + C
C) 3t22t+C3 t ^ { 2 } - \frac { 2 } { \sqrt { t } } + C
D) 32t24t+C\frac { 3 } { 2 } t ^ { 2 } - 4 \sqrt { t } + C

Correct Answer

verifed

verified

Provide an appropriate response. -The function f(x)={7x0x<10x=1f ( x ) = \left\{ \begin{array} { l l } 7 x & 0 \leq x < 1 \\ 0 & x = 1 \end{array} \right. is zero at x=0x = 0 and x=1x = 1 and differentiable on (0,1)( 0,1 ) , but its derivative on (0,1)( 0,1 ) is never zero. Does this example contradict Rolle's Theorem?

Correct Answer

verifed

verified

This example does not contradi...

View Answer

Find the derivative at each critical point and determine the local extreme values. - y={14x212x+154,x1x36x2+8x,x>1y = \left\{ \begin{array} { l l } - \frac { 1 } { 4 } x ^ { 2 } - \frac { 1 } { 2 } x + \frac { 15 } { 4 } , & x \leq 1 \\x ^ { 3 } - 6 x ^ { 2 } + 8 x , & x > 1\end{array} \right.


A)
 Critical Pt.  derivative  Extremum  Value x=10 local max 4x=3.150 local min 3.08\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=-1 & 0 & \text { local max } & 4 \\x=3.15 & 0 & \text { local min } & -3.08\end{array}

B)
 Critical Pt.  derivative  Extremum  Value x=1 undefined  local min 4x=3.150 local max 3.08\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=-1 & \text { undefined } & \text { local min } & 4 \\x=3.15 & 0 & \text { local max } & -3.08\end{array}

C)
 Critical Pt.  derivative  Extremum  Value x=10 local min 4x=3.150 local max 3.08\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=-1 & 0 & \text { local min } & 4 \\x=3.15 & 0 & \text { local max } & -3.08\end{array}

D)
 Critical Pt.  derivative  Extremum  Value x=10 local max 4x=3.15 undefined  local max 3.08\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=1 & 0 & \text { local max } & 4 \\x=3.15 & \text { undefined } & \text { local max } & -3.08\end{array}

Correct Answer

verifed

verified

Find the largest open interval where the function is changing as requested. -Increasing f(x) =1x2+1\quad f ( x ) = \frac { 1 } { x ^ { 2 } + 1 }


A) (,1) ( - \infty , 1 )
B) (0,) ( 0 , \infty )
C) (,0) ( - \infty , 0 )
D) (1,) ( 1 , \infty )

Correct Answer

verifed

verified

Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all local extrema. - f(x) =0.1x4x315x2+59x+8f ( x ) = 0.1 x ^ { 4 } - x ^ { 3 } - 15 x ^ { 2 } + 59 x + 8


A) Approximate local maximum at 1.805; approximate local minima at -6.72 and 12.449
B) Approximate local maximum at 1.703; approximate local minima at -6.754 and 12.588
C) Approximate local maximum at 1.735; approximate local minima at -6.777 and 12.542
D) Approximate local maximum at 1.77; approximate local minima at -6.771 and 12.53

Correct Answer

verifed

verified

Find the derivative at each critical point and determine the local extreme values. - y=x21xy = x ^ { 2 } \sqrt { 1 - x }


A)
 Critical Pt.  derivative  Extremum  Value x=450 local max 161255\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=\frac{4}{5} & 0 & \text { local max } & \frac{16}{125} \sqrt{5}\end{array}

B)
 Critical Pt.  derivative  Extremum  Value x=00 min 0x=10 min 0x=450 local max161255\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=0 & 0 & \text { min } & 0 \\x=1 & 0 & \text { min } & 0 \\x=\frac{4}{5} & 0 & \text { local } \max & \frac{16}{125} \sqrt{5}\end{array}

C)
 Critical Pt.  derivative  Extremum  Value x=00min0x=1 undefined  min 0x=450 local max 161255\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=0 & 0 & \min & 0 \\x=1 & \text { undefined } & \text { min } & 0 \\x=\frac{4}{5} & 0 & \text { local max } & \frac{16}{125} \sqrt{5}\end{array}

D)
 Critical Pt.  derivative  Extremum  Value x=1 undefined  min 0x=450 local max161255\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=1 & \text { undefined } & \text { min } & 0 \\x=\frac{4}{5} & 0 & \text { local } \max & \frac{16}{125} \sqrt{5}\end{array}

Correct Answer

verifed

verified

Find the largest open interval where the function is changing as requested. -Decreasing y=1x2+7y = \frac { 1 } { x ^ { 2 } } + 7


A) (7,0) ( - 7,0 )
B) (0,) ( 0 , \infty )
C) (7,) ( 7 , \infty )
D) (7,7) ( - 7,7 )

Correct Answer

verifed

verified

Identify the function's local and absolute extreme values, if any, saying where they occur. - f(x) =x3+9x2+27x3f ( x ) = x ^ { 3 } + 9 x ^ { 2 } + 27 x - 3


A) local maximum at x=3x = - 3
B) local minimum at x=3x = - 3
C) local maximum at x=3x = - 3 ; local minimum at x=3x = 3
D) no local extrema

Correct Answer

verifed

verified

Find the extreme values of the function and where they occur. - y=1x2+1y = \frac { 1 } { x ^ { 2 } + 1 }


A) The minimum value is 1- 1 at x=0.5x = 0.5 .
B) The maximum value is 1 at x=0.5x = 0.5 , the minimum value is 1- 1 at x=0.5x = 0.5 .
C) The maximum value is 1 at x=0.5x = 0.5 .
D) The maximum value is 1 at x=0x = 0 .

Correct Answer

verifed

verified

Find all possible functions with the given derivative. - y=x36xy ^ { \prime } = x ^ { 3 } - 6 x


A) x446x22+C\frac { x ^ { 4 } } { 4 } - \frac { 6 x ^ { 2 } } { 2 } + C
B) x336x22+C\frac { x ^ { 3 } } { 3 } - \frac { 6 x ^ { 2 } } { 2 } + C
C) 3x26+C3 x ^ { 2 } - 6 + C
D) x44+6x2+C\frac { x ^ { 4 } } { 4 } + 6 x ^ { 2 } + C

Correct Answer

verifed

verified

Find the absolute extreme values of the function on the interval. - g(x) =67x2,4x5g ( x ) = 6 - 7 x ^ { 2 } , - 4 \leq x \leq 5


A) absolute maximum is 12 at x=0x = 0 ; absolute minimum is 106- 106 at x=5x = 5
B) absolute maximum is 6 at x=0x = 0 ; absolute minimum is 169- 169 at x=5x = 5
C) absolute maximum is 7 at x=0x = 0 ; absolute minimum is 181- 181 at x=5x = 5
D) absolute maximum is 42 at x=0x = 0 ; absolute minimum is 106- 106 at x=4x = - 4

Correct Answer

verifed

verified

Find the location of the indicated absolute extremum for the function. -Minimum Find the location of the indicated absolute extremum for the function. -Minimum   A)  x = -3 B)  x = -4 C)  x = 2 D)  x = 0


A) x = -3
B) x = -4
C) x = 2
D) x = 0

Correct Answer

verifed

verified

Using the derivative of f(x) given below, determine the critical points of f(x) . -f'(x) = (x - 5) e-x


A) 5
B) 6
C) -6
D) -5

Correct Answer

verifed

verified

Determine whether the function satisfies the hypotheses of the Mean Value Theorem for the given interval. - f(θ)={cosθθ,πθ<00,θ=0f ( \theta ) = \left\{ \begin{array} { c c } \frac { \cos \theta } { \theta } , & - \pi \leq \theta < 0 \\0 , & \theta = 0\end{array} \right.

Correct Answer

verifed

verified

Find the value or values of cc that satisfy the equation f(b) f(a) ba=f(c) \frac { f ( b ) - f ( a ) } { b - a } = f ^ { \prime } ( c ) in the conclusion of the Mean Value Theorem for the function and interval. -An approximation to the total profit (in thousands of dollars) from the sale of xx hundred thousand tires is given by p=x3+15x248x+450,x3p = - x ^ { 3 } + 15 x ^ { 2 } - 48 x + 450 , x \geq 3 . Find the number of hundred thousands of tires that must be sold to maximize profit.


A) 5 hundred thousand
B) 3 hundred thousand
C) 10 hundred thousand
D) 8 hundred thousand

Correct Answer

verifed

verified

Find all possible functions with the given derivative. - y=x5y ^ { \prime } = x ^ { 5 }


A) 5x4+C5 x 4 + C
B) 6x6+C6 x ^ { 6 } + C
C) 15x4+C\frac { 1 } { 5 } x ^ { 4 } + C
D) 16x6+C\frac { 1 } { 6 } x ^ { 6 } + C

Correct Answer

verifed

verified

Showing 101 - 120 of 159

Related Exams

Show Answer