Filters
Question type

Study Flashcards

Find the value or values of cc that satisfy the equation f(b)f(a)ba=f(c)\frac { f ( b ) - f ( a ) } { b - a } = f ^ { \prime } ( c ) in the conclusion of the Mean Value Theorem for the function and interval. -  The function P(x)=2x+200x,0<x<\text { The function } \mathrm { P } ( \mathrm { x } ) = 2 \mathrm { x } + \frac { 200 } { \mathrm { x } } , 0 < \mathrm { x } < \infty models the perimeter of a rectangle of dimensions x by 100x\frac{100}{x} (a) Find the extreme values for P. (b) Give an interpretation in terms of perimeter of the rectangle for any values found in part (a).

Correct Answer

verifed

verified

(a) The only critical point in the inter...

View Answer

Find the extreme values of the function and where they occur. - y=(x5) 2/3y = ( x - 5 ) ^ { 2 / 3 }


A) The minimum value is 0 at x = -5.
B) The maximum value is 0 at x = -5.
C) There are no definable extrema.
D) The minimum value is 0 at x = 5.

Correct Answer

verifed

verified

Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all local extrema. - f(x) =0.01x5x4+x3+8x27x+94f ( x ) = 0.01 x ^ { 5 } - x ^ { 4 } + x ^ { 3 } + 8 x ^ { 2 } - 7 x + 94


A) Approximate local maxima at -1.861 and 2.247; approximate local minima at 0.423 and 79.192
B) Approximate local maxima at -1.878 and 2.17; approximate local minima at 0.466 and 79.115
C) Approximate local maxima at -1.827 and 2.289; approximate local minima at 0.455 and 79.158
D) Approximate local maxima at -1.861 and 2.247; approximate local minimum at 0.423

Correct Answer

verifed

verified

Using the derivative of f(x) given below, determine the intervals on which f(x) is increasing or decreasing. - f(x) =(8x) (9x) f ^ { \prime } ( x ) = ( 8 - x ) ( 9 - x )


A) Decreasing on (,8) ( - \infty , 8 ) ; increasing on (9,) ( 9 , \infty )
B) Decreasing on (8,9) ( 8,9 ) ; increasing on (,8) (9,) ( - \infty , 8 ) \cup ( 9 , \infty )
C) Decreasing on (,8) (9,) ( - \infty , - 8 ) \cup ( - 9 , \infty ) ; increasing on (8,9) ( - 8 , - 9 )
D) Decreasing on (,8) (9,) ( - \infty , 8 ) \cup ( 9 , \infty ) ; increasing on (8,9) ( 8,9 )

Correct Answer

verifed

verified

Find the function with the given derivative whose graph passes through the point P. - r(θ) =8csc2θ,P(π4,0) \mathrm { r } ^ { \prime } ( \theta ) = 8 - \csc ^ { 2 } \theta , \mathrm { P } \left( \frac { \pi } { 4 } , 0 \right)


A) r(θ) =8θ+cotθ2π1r ( \theta ) = 8 \theta + \cot \theta - 2 \pi - 1
B) r(θ) =8θcotθ2π2r ( \theta ) = 8 \theta - \cot \theta - 2 \pi - 2
C) r(θ) =8θ+cotθ2π+1r ( \theta ) = 8 \theta + \cot \theta - 2 \pi + 1
D) r(θ) =8θcotθ2π+2r ( \theta ) = 8 \theta - \cot \theta - 2 \pi + 2

Correct Answer

verifed

verified

Identify the function's local and absolute extreme values, if any, saying where they occur. - h(x) =x2x2+3x+6h ( x ) = \frac { x - 2 } { x ^ { 2 } + 3 x + 6 }


A) local minimum at x = -5; local maximum at x = 6
B) local minimum at x = -2; local maximum at x = 6
C) local minimum at x = -2; no local maxima
D) no local extrema

Correct Answer

verifed

verified

Find the extreme values of the function and where they occur. - y=x312x+2y = x ^ { 3 } - 12 x + 2


A) Local maximum at (2,18) ( - 2,18 ) , local minimum at (2,14) ( 2 , - 14 ) .
B) Local maximum at (2,14) ( 2 , - 14 ) , local minimum at (2,18) ( - 2,18 ) .
C) None
D) Local maximum at (0,0) ( 0,0 ) .

Correct Answer

verifed

verified

Find the largest open interval where the function is changing as requested. -Increasing y = 7x - 5


A) (-5, 7)
B) (-5, )
C) (-, 7)
D) (-, )

Correct Answer

verifed

verified

Find the derivative at each critical point and determine the local extreme values. - y={4x,x<04+3xx2,x0y = \left\{ \begin{array} { l l } 4 - x , & x < 0 \\4 + 3 x - x ^ { 2 } , & x \geq 0\end{array} \right.


A)
 Critical Pt.  derivative  Extremum  Value x=4 undefined  local min 4x=00 local max 254\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=4 & \text { undefined } & \text { local min } & 4 \\x=0 & 0 & \text { local max } & \frac{25}{4}\end{array}

B)
 Critical Pt.  derivative  Extremum  Value x=0 undefined  local min 4x=520 local max 414\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=0 & \text { undefined } & \text { local min } & 4 \\x=\frac{5}{2} & 0 & \text { local max } & \frac{41}{4}\end{array}

C)
 Critical Pt.  derivative  Extremum  Value x=0 undefined  local min 4x=320 local max 74\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=0 & \text { undefined } & \text { local min } & -4 \\x=\frac{3}{2} & 0 & \text { local max } & \frac{7}{4}\end{array}

D)
 Critical Pt.  derivative  Extremum  Value x=0 undefined  local min 4x=320 local max 254\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=0 & \text { undefined } & \text { local min } & 4 \\x=\frac{3}{2} & 0 & \text { local max } & \frac{25}{4}\end{array}

Correct Answer

verifed

verified

Find the extreme values of the function and where they occur. - y=x2exy = x ^ { 2 } e ^ { x }


A) Minimum value is 4e24 \mathrm { e } ^ { - 2 } at x=2\mathrm { x } = - 2 ; no maximum value.
B) Minimum value is 0 at x=0x = 0 , maximum value is 4e24 \mathrm { e } ^ { - 2 } at x=2x = - 2 .
C) Minimum value is 0 at x=0x = 0 ; no maximum value.
D) None

Correct Answer

verifed

verified

Solve the problem. -On our moon, the acceleration of gravity is 1.6 m/sec21.6 \mathrm {~m} / \mathrm { sec } ^ { 2 } . If a rock is dropped into a crevasse, how fast will it be going just before it hits bottom 45 seconds later?


A) 3240 m/sec3240 \mathrm {~m} / \mathrm { sec }
B) 36 m/sec- 36 \mathrm {~m} / \mathrm { sec }
C) 72 m/sec- 72 \mathrm {~m} / \mathrm { sec }
D) 72 m/sec72 \mathrm {~m} / \mathrm { sec }

Correct Answer

verifed

verified

Find the function with the given derivative whose graph passes through the point P. - r(t) =sec2t4,P(0,0) r ^ { \prime } ( t ) = \sec ^ { 2 } t - 4 , P ( 0,0 )


A) r(t) =tant4tr ( t ) = \tan t - 4 t
B) r(t) =secttant4t1r ( t ) = \sec t \tan t - 4 t - 1
C) r(t) =sectt6r ( t ) = \sec t - t - 6
D) r(t) =sect4t4r ( t ) = \sec t - 4 t - 4

Correct Answer

verifed

verified

Find the absolute extreme values of the function on the interval. - f(x) =ln(x) ,7x1f ( x ) = \ln ( - x ) , - 7 \leq x \leq - 1


A) No minimum value; no maximum value
B) Minimum value is 0 at x=1x = - 1 ; no maximum value
C) Maximum value is 0 at x=1x = - 1 ; minimum value is ln7- \ln 7 at x=7x = - 7
D) Minimum value is 0 at x=1x = - 1 ; maximum value is ln7\ln 7 at x=7x = - 7

Correct Answer

verifed

verified

Find the value or values of cc that satisfy the equation f(b) f(a) ba=f(c) \frac { f ( b ) - f ( a ) } { b - a } = f ^ { \prime } ( c ) in the conclusion of the Mean Value Theorem for the function and interval. - f(x) =x2+5x+2,[1,2]f ( x ) = x ^ { 2 } + 5 x + 2 , [ 1,2 ]


A) 32,32- \frac { 3 } { 2 } , \frac { 3 } { 2 }
B) 1,2
C) 32\frac { 3 } { 2 }
D) 0,320 , \frac { 3 } { 2 }

Correct Answer

verifed

verified

Find the absolute extreme values of the function on the interval. - f(x) =cscx,π2x3π2f ( x ) = \csc x , - \frac { \pi } { 2 } \leq x \leq \frac { 3 \pi } { 2 }


A) absolute maximum is 0 at x=π\mathrm { x } = - \pi ; absolute minimum is 1- 1 at x=π\mathrm { x } = \pi
B) absolute maximum does not exist; absolute minimum does not exist
C) absolute maximum is 1- 1 at x=πx = \pi ; absolute minimum is 1 at x=0x = 0
D) absolute maximum is 1 at x=πx = \pi ; absolute minimum is 1- 1 at x=πx = \pi

Correct Answer

verifed

verified

Provide an appropriate response. -Let f have a derivative on an interval I. f' has successive distinct zeros at x = 1 and x = 5. Prove that there can be at most one zero of f on the interval (1, 5).

Correct Answer

verifed

verified

Assume there are 2 (or more) zeros blured image and ...

View Answer

Find the function with the given derivative whose graph passes through the point P. - r(θ) =4+sec2θ,P(π,0) \mathrm { r } ^ { \prime } ( \theta ) = 4 + \sec ^ { 2 } \theta , \mathrm { P } ( \pi , 0 )


A) r(θ) =4θ+13sec3θr ( \theta ) = 4 \theta + \frac { 1 } { 3 } \sec ^ { 3 } \theta
B) r(θ) =2θ2+tanθ4πr ( \theta ) = 2 \theta ^ { 2 } + \tan \theta - 4 \pi
C) r(θ) =4θ+tanθ4πr ( \theta ) = 4 \theta + \tan \theta - 4 \pi
D) r(θ) =2θ2+tanθ+4π\mathrm { r } ^ { \prime } ( \theta ) = 2 \theta ^ { 2 } + \tan \theta + 4 \pi

Correct Answer

verifed

verified

Find all possible functions with the given derivative. - y=32ty ^ { \prime } = \frac { 3 } { 2 \sqrt { t } }


A) 3t22+C\frac { 3 t ^ { 2 } } { 2 } + C
B) 3t+C3 \sqrt { t } + C
C) t+C\sqrt { t } + C
D) 3t2+C\frac { 3 t } { 2 } + C

Correct Answer

verifed

verified

Find the absolute extreme values of the function on the interval. - F(x) =3x2,0.5x3F ( x ) = - \frac { 3 } { x ^ { 2 } } , 0.5 \leq x \leq 3


A) absolute maximum is 13- \frac { 1 } { 3 } at x=12x = \frac { 1 } { 2 } ; absolute minimum is 12- 12 at x=3x = - 3
B) absolute maximum is 13- \frac { 1 } { 3 } at x=3x = 3 ; absolute minimum is 12- 12 at x=12x = \frac { 1 } { 2 }
C) absolute maximum is 13\frac { 1 } { 3 } at x=12x = \frac { 1 } { 2 } ; absolute minimum is 12- 12 at x=3x = 3
D) absolute maximum is 13- \frac { 1 } { 3 } at x=3x = 3 ; absolute minimum is 12- 12 at x=12x = - \frac { 1 } { 2 }

Correct Answer

verifed

verified

Using the derivative of f(x) given below, determine the intervals on which f(x) is increasing or decreasing. - f(x) =(x+5) 2exf ^ { \prime } ( x ) = ( x + 5 ) ^ { 2 } e ^ { - x }


A) Decreasing on (,5) ( - \infty , - 5 ) ; increasing on (5,) ( - 5 , \infty )
B) Never decreasing; increasing on (,5) (5,) ( - \infty , - 5 ) \cup ( - 5 , \infty )
C) Never increasing; decreasing on (,5) (5,) ( - \infty , - 5 ) \cup ( - 5 , \infty )
D) Never decreasing; increasing on (,5) (5,) ( - \infty , 5 ) \cup ( 5 , \infty )

Correct Answer

verifed

verified

Showing 121 - 140 of 159

Related Exams

Show Answer