Filters
Question type

If r(t) =(t,t5,tı\mathbf { r } ( t ) = \left( t , t ^ { 5 } , t ^ { \imath } \right\rangle , find rtt(t) \mathbf { r } ^ { tt } ( t )


A) (0,42t4,20t2\left( 0,42 t ^ { 4 } , 20 t ^ { 2 } \right\rangle
B) (0,42t5,20t3) \left( 0,42 t ^ { 5 } , 20 t ^ { 3 } \right)
C) (0,20t3,42t5) \left( 0,20 t ^ { 3 } , 42 t ^ { 5 } \right)
D) 1,5t6,7t8}\left\langle 1,5 t ^ { 6 } , 7 t ^ { 8 } \right\}
E) (0,20t2,42t4) \left( 0,20 t ^ { 2 } , 42 t ^ { 4 } \right)

Correct Answer

verifed

verified

The curves r1(t)=t,t3,t9\mathbf { r } _ { 1 } ( t ) = \left\langle t , t ^ { 3 } , t ^ { 9 } \right\rangle and r2(t)=sint,sin5t,t\mathbf { r } _ { 2 } ( t ) = \langle \sin t , \sin 5 t , t \rangle intersects at the origin. Find their angle of intersection correct to the nearest degree.

Correct Answer

verifed

verified

Find the unit tangent vector for the curve given by r(t) =15t5,13t3,t\mathbf { r } ( t ) = \left\langle \frac { 1 } { 5 } t ^ { 5 } , \frac { 1 } { 3 } t ^ { 3 } , t \right\rangle .


A) t4,t2,1}t10+t4\frac { \left\langle t ^ { 4 } , t ^ { 2 } , 1 \right\} } { \sqrt { t ^ { 10 } + t ^ { 4 } } }
B) t4,t2,1) 4t8+4t4+1\frac { \left\langle t ^ { 4 } , t ^ { 2 } , 1 \right) } { \sqrt { 4 t ^ { 8 } + 4 t ^ { 4 } + 1 } }
C)
t4,t2,1) t8+t4+1\frac { \left\langle t ^ { 4 } , t ^ { 2 } , 1 \right) } { \sqrt { t ^ { 8 } + t ^ { 4 } + 1 } }
D)
t4,t2,1t8+t4\frac { \left\langle t ^ { 4 } , t ^ { 2 } , 1 \right\rangle } { \sqrt { t ^ { 8 } + t ^ { 4 } } }
E) None of these

Correct Answer

verifed

verified

Find the domain of the vector function r(t) =8t,1t9,lnt\mathbf { r } ( t ) = \left\langle 8 \sqrt { t } , \frac { 1 } { t - 9 } , \ln t \right\rangle .


A) (0,9) (9,) ( 0,9 ) \cup ( 9 , \infty )
B) [0,8) (8,9) (9,) [ 0,8 ) \cup ( 8,9 ) \cup ( 9 , \infty )
C) (0,8) (8,) ( 0,8 ) \cup ( 8 , \infty )
D) (0,8) (8,9) (9,) ( 0,8 ) \cup ( 8,9 ) \cup ( 9 , \infty )

Correct Answer

verifed

verified

Find the limit limt0[(t2+3) i+cos5tj6k]\lim _ { t \rightarrow 0 } \left[ \left( t ^ { 2 } + 3 \right) \mathbf { i } + \cos 5 t \mathbf { j } - 6 \mathbf { k } \right]


A) 3i6k3 i - 6 \mathbf { k }
B) 4i+j4 \mathbf { i } + \mathbf { j }
C) 3i+j6k3 i + j - 6 \mathbf { k }
D) 4i4 \mathbf { i }

Correct Answer

verifed

verified

Find the integral (4ti+6t2j+4k) dt\int \left( 4 t \mathbf { i } + 6 t ^ { 2 } \mathbf { j } + 4 \mathbf { k } \right) d t .


A) 4i+12tj+C4 \mathbf { i } + 12 t \mathbf { j } + \mathbf { C }
B) 4ti+6t2j+4k+C4 t \mathbf { i } + 6 t ^ { 2 } \mathbf { j } + 4 \mathbf { k } + \mathbf { C }
C) 2t2i+2t3j+4tk+C2 t ^ { 2 } \mathbf { i } + 2 t ^ { 3 } \mathbf { j } + 4 t \mathbf { k } + \mathbf { C }
D) 4t2i+6t3j+4tk+C4 t ^ { 2 } \mathbf { i } + 6 t ^ { 3 } \mathbf { j } + 4 t \mathbf { k } + \mathbf { C }

Correct Answer

verifed

verified

Find parametric equations for the tangent line to the curve with parametric equations x=3tx = 3 t , y=5t2,z=4t3y = 5 t ^ { 2 } , z = 4 t ^ { 3 } at the point with t=1t = 1 .


A) x=1+3t,y=1+10t,z=1+12tx = 1 + 3 t , y = 1 + 10 t , z = 1 + 12 t
B) x=3+3t,y=5+10t,z=4+12tx = 3 + 3 t , y = 5 + 10 t , z = 4 + 12 t
C) x=1+3t,y=1+5t,z=1+4tx = 1 + 3 t , y = 1 + 5 t , z = 1 + 4 t
D) x=3+3t,y=5+5t,z=4+4tx = 3 + 3 t , y = 5 + 5 t , z = 4 + 4 t

Correct Answer

verifed

verified

Find the derivative of the vector function. r(t)=a+tb+t2c\mathbf { r } ( t ) = a + t b + t ^ { 2 } c

Correct Answer

verifed

verified

The following table gives coordinates of a particle moving through space along a smooth curve. txyz0.55.89.14.3112.614.916.81.525.621.229.4239.239.537.92.542.442.443\begin{array}{|c|c|c|c|}\hline \mathbf{t} & x & y & z \\\hline 0.5 & 5.8 & 9.1 & 4.3 \\\hline 1 & 12.6 & 14.9 & 16.8 \\\hline 1.5 & 25.6 & 21.2 & 29.4 \\\hline 2 & 39.2 & 39.5 & 37.9 \\\hline 2.5 & 42.4 & 42.4 & 43 \\\hline\end{array} Find the average velocity over the time interval [1,2][ 1,2 ] .


A) v=21.1i+24.6j+26.6kv = 21.1 \mathbf { i } + 24.6 \mathbf { j } + 26.6 \mathbf { k }
B) v=21.1i+26.6j+21.1kv = 21.1 \mathbf { i } + 26.6 \mathbf { j } + 21.1 \mathbf { k }
C) v=24.6i+24.6j+21.1kv = 24.6 \mathbf { i } + 24.6 \mathbf { j } + 21.1 \mathbf { k }
D) v=26.6i+24.6j+21.1kv = 26.6 \mathbf { i } + 24.6 \mathbf { j } + 21.1 \mathbf { k }
E) v=21.1i+26.6j+26.6kv = 21.1 \mathbf { i } + 26.6 \mathbf { j } + 26.6 \mathbf { k }

Correct Answer

verifed

verified

Find a vector function that represents the curve of intersection of the two surfaces: the top half of the ellipsoid x2+7y2+7z2=49x ^ { 2 } + 7 y ^ { 2 } + 7 z ^ { 2 } = 49 and the parabolic cylinder y=x2y = x ^ { 2 } .


A)
r(t) =ti+t4j+49t2+7t7k\mathbf { r } ( t ) = t \mathbf { i } + t ^ { 4 } \mathbf { j } + \sqrt { \frac { 49 - t ^ { 2 } + 7 t } { 7 } } \mathbf { k }
B)
r(t) =ti+t2j+49+t27t47k\mathbf { r } ( t ) = t \mathbf { i } + t ^ { 2 } \mathbf { j } + \sqrt { \frac { 49 + t ^ { 2 } - 7 t ^ { 4 } } { 7 } } \mathbf { k }
C)
r(t) =ti+t2j+49t27t7k\mathrm { r } ( t ) = t \mathbf { i } + t ^ { 2 } \mathbf { j } + \sqrt { \frac { 49 - t ^ { 2 } - 7 t } { 7 } } \mathbf { k }
D)
r(t) =ti+t2j+7t27t47k\mathbf { r } ( t ) = t \mathbf { i } + t ^ { 2 } \mathbf { j } + \sqrt { \frac { 7 - t ^ { 2 } - 7 t ^ { 4 } } { 7 } } \mathbf { k }
E)
r(t) =tit2j49t27t7k\mathbf { r } ( t ) = t \mathbf { i } - t ^ { 2 } \mathbf { j } - \sqrt { \frac { 49 - t ^ { 2 } - 7 t } { 7 } } \mathbf { k }

Correct Answer

verifed

verified

At what point on the curve x=t3,y=9t,z=t4x = t ^ { 3 } , y = 9 t , z = t ^ { 4 } is the normal plane parallel to the plane 3x+9y4z=4?3 x + 9 y - 4 z = 4 ?


A) (1,3,9) ( - 1 , - 3,9 )
B) (9,18,2) ( 9,18 , - 2 )
C) (1,9,1) ( - 1 , - 9,1 )
D) (18,9,1) ( - 18,9,1 )
E) (9,1,1) ( - 9,1,1 )

Correct Answer

verifed

verified

Find the unit tangent and unit normal vectors T(t)\mathrm { T } ( t ) and N(t)\mathrm { N } ( t ) for the curve CC defined by r(t)=ti+2t2j\mathbf { r } ( t ) = t \mathbf { i } + 2 t ^ { 2 } \mathbf { j } . Sketch the graph of CC , and show T(t)\mathrm { T } ( t ) and N(t)\mathrm { N } ( t ) for t=1t = 1 .

Correct Answer

verifed

verified

The curvature of the curve given by the vector function rr is k(t) =rt(t) ×rtt(t) rt(t) 3\mathrm { k } ( t ) = \frac { \left| \mathbf { r } ^ { t } ( t ) \times \mathbf { r } ^ { tt } ( t ) \right| } { \left| \mathbf { r } ^ { t } ( t ) \right| ^ { 3 } } Use the formula to find the curvature of r(t) =(19t,et,et}\mathbf { r } ( t ) = \left( \sqrt { 19 } t , e ^ { t } , e ^ { - t } \right\} at the point (0,1,1) ( 0,1,1 ) .


A) 21\sqrt { 21 }
B) 221\frac { \sqrt { 2 } } { 21 }
C) 21221 \sqrt { 2 }
D) 212\frac { 21 } { \sqrt { 2 } }
E) 2121\frac { \sqrt { 21 } } { 21 }

Correct Answer

verifed

verified

Find r(t) \mathbf { r } ^ { \tt } ( t ) for the function given. r(t) =8i+sintj+costk\mathbf { r } ( t ) = 8 \mathbf { i } + \sin t \mathbf { j } + \cos t \mathbf { k }


A) rtt(t) =8sintjcostk\mathrm { r } ^ { tt } ( t ) = - 8 \sin t \mathrm { j } - \cos t \mathrm { k }
B) rtt(t) =sintjcostk\mathrm { r } ^ { tt} ( t ) = - \sin t \mathrm { j } - \cos t \mathrm { k }
C) rtt(t) =costjsintk\mathrm { r } ^ { tt } ( t ) = \cos t \mathrm { j } - \sin t \mathrm { k }
D) rtt(t) =sintj+8costk\mathrm { r } ^ { tt } ( t ) = - \sin t \mathrm { j } + 8 \cos t \mathrm { k }
E) rtt(t) =8costjsintk\mathrm { r } ^ { tt } ( t ) = - 8 \cos t \mathrm { j } - \sin t \mathrm { k }

Correct Answer

verifed

verified

Find the curvature of the curve r(t) =3sin4ti+3cos4tj+3tk\mathbf { r } ( t ) = 3 \sin 4 t \mathbf { i } + 3 \cos 4 t \mathbf { j } + 3 t \mathbf { k } .


A) 43\frac { 4 } { 3 }
B) 34\frac { 3 } { 4 }
C) 5116\frac { 51 } { 16 }
D) 1651\frac { 16 } { 51 }

Correct Answer

verifed

verified

Use Simpson's Rule with n=4\mathrm { n } = 4 to estimate the length of the arc of the curve with equations x=t,y=4t,z=t2+1x = \sqrt { t } , y = \frac { 4 } { t } , z = t ^ { 2 } + 1 , from (1,4,2) ( 1,4,2 ) to (2,1,17) ( 2,1,17 ) . Round your answer to four decimal places.


A) 14.82414.824
B) 7.20417.2041
C) 15.830615.8306
D) 6.57066.5706
E) None of these

Correct Answer

verifed

verified

 Find equations of the normal plane to x=t,y=t2,z=t3 at the point (2,4,8)\text { Find equations of the normal plane to } x = t , y = t ^ { 2 } , z = t ^ { 3 } \text { at the point } ( 2,4,8 ) \text {. }

Correct Answer

verifed

verified

 Find the integral (sin7ti+cos7tj+et/5k)dt\text { Find the integral } \int \left( \sin 7 t \mathbf { i } + \cos 7 t \mathbf { j } + e ^ { - t / 5 } \mathbf { k } \right) d t \text {. }

Correct Answer

verifed

verified

Find the position vector of a particle that has the given acceleration and the given initial velocity and position. a(t)=4k,v(0)=i+j20k,r(0)=4i+9j\mathbf { a } ( t ) = - 4 \mathbf { k } , \mathbf { v } ( 0 ) = \mathbf { i } + \mathbf { j } - 20 \mathbf { k } , \mathbf { r } ( 0 ) = 4 \mathbf { i } + 9 \mathbf { j }

Correct Answer

verifed

verified

Find the scalar tangential and normal components of acceleration of a particle with position vector r(t) =4sinti+4costj+3tk\mathbf { r } ( t ) = 4 \sin t \mathbf { i } + 4 \cos t \mathbf { j } + 3 t \mathbf { k }


A) aT=0,aN=410a _ { \mathrm { T } } = 0 , a _ { \mathrm { N } } = 4 \sqrt { 10 }
B) aT=3,aN=410a _ { \mathrm { T } } = 3 , a _ { \mathrm { N } } = 4 \sqrt { 10 }
C) aT=3,aN=4a _ { \mathrm { T } } = 3 , a _ { \mathrm { N } } = 4
D) aT=0,aN=4a _ { T } = 0 , a _ { N } = 4

Correct Answer

verifed

verified

Showing 21 - 40 of 58

Related Exams

Show Answer