A) A
B) B
C) C
D) D
E) E
Correct Answer
verified
A) The cell membrane forms a border between one cell and another in tightly packed tissues such as epithelium.
B) Cell membranes communicate signals from one organism to another.
C) The two sides of a cell membrane face different environments and carry out different functions.
D) The "innerness" and "outerness" of membrane surfaces are predetermined by genes.
E) Proteins can only be associated with the cell membranes on the cytoplasmic side.
Correct Answer
verified
A) The animal cell is in a hypotonic solution, and the plant cell is in an isotonic solution.
B) The animal cell is in an isotonic solution, and the plant cell is in a hypertonic solution.
C) The animal cell is in a hypertonic solution, and the plant cell is in an isotonic solution.
D) The animal cell is in an isotonic solution, and the plant cell is in a hypotonic solution.
E) The animal cell is in a hypertonic solution, and the plant cell is in a hypotonic solution.
Correct Answer
verified
A) It is a peripheral membrane protein.
B) It exhibits a specificity for a particular type of molecule.
C) It requires the expenditure of cellular energy to function.
D) It works against diffusion.
E) It has few, if any, hydrophobic amino acids.
Correct Answer
verified
A) HIV infection should be hindered by microtubule polymerization inhibitors such as nocodazole.
B) HIV infection should be more efficient at lower temperatures.
C) intact cortical actin microfilaments should interfere with HIV infection.
D) cells lacking integrins should be resistant to HIV infection.
E) addition of ligands for other cell-surface receptors to stimulate their endocytosis should increase the efficiency of HIV infection.
Correct Answer
verified
A) spread in a continuous layer over the inner and outer surfaces of the membrane.
B) confined to the hydrophobic interior of the membrane.
C) embedded in a lipid bilayer.
D) randomly oriented in the membrane, with no fixed inside-outside polarity.
E) free to depart from the fluid membrane and dissolve in the surrounding solution.
Correct Answer
verified
A) the bilayer is hydrophilic.
B) it moves through hydrophobic channels.
C) water movement is tied to ATP hydrolysis.
D) it is a small, polar, charged molecule.
E) it moves through aquaporins in the membrane.
Correct Answer
verified
A) peripheral proteins.
B) phospholipids.
C) carbohydrates.
D) integral proteins.
E) cholesterol molecules.
Correct Answer
verified
A) The molarity of sucrose and glucose are equal on both sides.
B) The molarity of glucose is higher in side A than in side B.
C) The water level is higher in side A than in side B.
D) The water level is unchanged.
E) The water level is higher in side B than in side A.
Correct Answer
verified
A) The double bonds form kinks in the fatty acid tails, preventing adjacent lipids from packing tightly.
B) Unsaturated fatty acids have a higher cholesterol content and therefore more cholesterol in membranes.
C) Unsaturated fatty acids are more polar than saturated fatty acids.
D) The double bonds block interaction among the hydrophilic head groups of the lipids.
E) The double bonds result in shorter fatty acid tails and thinner membranes.
Correct Answer
verified
A) A
B) B
C) C
D) D
E) E
Correct Answer
verified
A) CO₂
B) an amino acid
C) glucose
D) K⁺
E) starch
Correct Answer
verified
A) transport
B) enzymatic activity
C) intracellular joining
D) cell-cell recognition
E) signal transduction
Correct Answer
verified
A) Sodium ion transport will increase; higher osmotic potential will increase airway surface liquid volume.
B) Sodium ion transport will increase; higher osmotic potential will decrease airway surface liquid volume.
C) Sodium ion transport will decrease; lower osmotic potential will decrease airway surface liquid volume.
D) Sodium ion transport will decrease; lower osmotic potential will increase the airway surface liquid volume.
E) Sodium ion transport will be unaffected; lack of chloride transport still reduces osmotic potential and decreases the airway surface liquid volume.
Correct Answer
verified
A) Water will leave the cells, causing them to shrivel and collapse.
B) NaCl will be exported from the red blood cells by facilitated diffusion.
C) The blood cells will take up water, swell, and eventually burst.
D) NaCl will passively diffuse into the red blood cells.
E) The blood cells will expend ATP for active transport of NaCl into the cytoplasm.
Correct Answer
verified
A) Cell membranes have stopped evolving now that they are fluid mosaics.
B) Cell membranes cannot evolve if the membrane proteins do not.
C) The evolution of cell membranes is driven by the evolution of glycoproteins and glycolipids.
D) All components of membranes evolve in response to natural selection.
E) An individual organism selects its preferred type of cell membrane for particular functions.
Correct Answer
verified
A) phospholipids and cellulose
B) nucleic acids and proteins
C) phospholipids and proteins
D) proteins and cellulose
E) glycoproteins and cholesterol
Correct Answer
verified
A) The cell would shrink because the water in the beaker is hypotonic relative to the cytoplasm of the RBC.
B) The cell would shrink because the water in the beaker is hypertonic relative to the cytoplasm of the RBC.
C) The cell would swell because the water in the beaker is hypotonic relative to the cytoplasm of the RBC.
D) The cell will remain the same size because the solution outside the cell is isotonic.
E) The cell will remain the same size because the solution outside the cell is hypotonic.
Correct Answer
verified
A) receptor-mediated endocytosis
B) pinocytosis
C) phagocytosis
D) cotransport
E) facilitated diffusion
Correct Answer
verified
A) cotransport proteins.
B) ion channels.
C) carrier proteins.
D) passive diffusion across the plasma membrane.
E) cellular metabolic reactions that create or destroy ions.
Correct Answer
verified
Showing 41 - 60 of 88
Related Exams