Filters
Question type

Write an expression for the apparent nth term of the sequence.(Assume that n begins with 1. ) ​ 27,315,423,531,639,\frac { 2 } { 7 } , \frac { 3 } { 15 } , \frac { 4 } { 23 } , \frac { 5 } { 31 } , \frac { 6 } { 39 } , \ldots


A) an=n+18n8a _ { n } = \frac { n + 1 } { 8 n - 8 }
B) an=n18n+1a _ { n } = \frac { n - 1 } { 8 n + 1 }
C) an=n+18n+1a _ { n } = \frac { n + 1 } { 8 n + 1 }
D) an=n18n1a _ { n } = \frac { n - 1 } { 8 n - 1 }
E) an=n+18n1a _ { n } = \frac { n + 1 } { 8 n - 1 }

Correct Answer

verifed

verified

Use sigma notation to write the sum.​ 13(1) +13(2) +13(3) ++13(9) \frac { 1 } { 3 ( 1 ) } + \frac { 1 } { 3 ( 2 ) } + \frac { 1 } { 3 ( 3 ) } + \ldots + \frac { 1 } { 3 ( 9 ) }


A) i=1913i\sum _ { i = 1 } ^ { 9 } - \frac { 1 } { 3 i }
B) i=01013i\sum _ { i = 0 } ^ { 10 } \frac { 1 } { 3 i }
C) i=193i\sum _ { i = 1 } ^ { 9 } 3 i
D) i=1913i\sum _ { i = 1 } ^ { 9 } \frac { 1 } { 3 i }
E) i=1913i\sum _ { i = 1 } ^ { - 9 } \frac { 1 } { 3 i }

Correct Answer

verifed

verified

Select the first five terms of the sequence defined recursively.​ a1=23,ak+1=ak+3a _ { 1 } = 23 , a _ { k + 1 } = a _ { k } + 3


A) 23,26,29,32,3523,26,29,32,35
B) 26,17,29,11,826,17,29,11,8
C) 20,26,14,32,820,26,14,32,8
D) 20,17,14,11,820,17,14,11,8
E) 23,17,29,11,3523,17,29,11,35

Correct Answer

verifed

verified

Select the first five terms of the sequence.(Assume that n begins with 1. ) ​ an=85a _ { n } = \frac { 8 } { 5 }


A) 85,85,85,85,85- \frac { 8 } { 5 } , - \frac { 8 } { 5 } , - \frac { 8 } { 5 } , - \frac { 8 } { 5 } , - \frac { 8 } { 5 }
B) 58,58,58,58,58- \frac { 5 } { 8 } , \frac { 5 } { 8 } , - \frac { 5 } { 8 } , \frac { 5 } { 8 } , - \frac { 5 } { 8 }
C) 85,85,85,85,85\frac { 8 } { 5 } , \frac { 8 } { 5 } , \frac { 8 } { 5 } , \frac { 8 } { 5 } , \frac { 8 } { 5 }
D) 0,1,2,3,4
E) 58,58,58,58,58\frac { 5 } { 8 } , \frac { 5 } { 8 } , \frac { 5 } { 8 } , \frac { 5 } { 8 } , \frac { 5 } { 8 }

Correct Answer

verifed

verified

Select the first five terms of the sequence.(Assume that n begins with 1. ) ​ an=(1) n(nn+11) a _ { n } = ( - 1 ) ^ { n } \left( \frac { n } { n + 11 } \right)


A) 112,213,314,415,516\frac { 1 } { 12 } , \frac { 2 } { 13 } , \frac { 3 } { 14 } , \frac { 4 } { 15 } , \frac { 5 } { 16 }
B) 112,213,314,415,516- \frac { 1 } { 12 } , - \frac { 2 } { 13 } , - \frac { 3 } { 14 } , - \frac { 4 } { 15 } , - \frac { 5 } { 16 }
C) 112,213,314,415,516- \frac { 1 } { 12 } , \frac { 2 } { 13 } , \frac { 3 } { 14 } , \frac { 4 } { 15 } , - \frac { 5 } { 16 }
D) 12,213,314,415,516- 12 , - \frac { 2 } { 13 } , - \frac { 3 } { 14 } , \frac { 4 } { 15 } , - \frac { 5 } { 16 }
E) 112,213,314,415,516- \frac { 1 } { 12 } , \frac { 2 } { 13 } , - \frac { 3 } { 14 } , \frac { 4 } { 15 } , - \frac { 5 } { 16 }

Correct Answer

verifed

verified

Write the first five terms of the sequence defined recursively.Use the pattern to write the nth term of the sequence as a function of n.(Assume that n begins with 1. ) a1=19,ak+1=ak5a _ { 1 } = 19 , a _ { k + 1 } = a _ { k } - 5


A) an=295n;19,14,9,4,6a _ { n } = 29 - 5 n ; 19,14,9,4 , - 6
B) an=19;19,19,19,19,19a _ { n } = 19 ; 19,19,19,19,19
C) an=19(n1) ;14,9,4,1,6a _ { n } = 19 ( n - 1 ) ; 14,9,4 , - 1 , - 6
D) an=195n;19,14,9,4,1a _ { n } = 19 - 5 n ; 19,14,9,4 , - 1
E) an=245n;19,14,9,4,1a _ { n } = 24 - 5 n ; 19,14,9,4 , - 1

Correct Answer

verifed

verified

Write an expression for the apparent nth term of the sequence.(Assume that n begins with 1. ) ​ 1,7,13,19,25,1,7,13,19,25 , \ldots


A) an=6n5a _ { n } = - 6 n - 5
B) an=6n5a _ { n } = 6 n - 5
C) an=5n+6a _ { n } = 5 n + 6
D) an=5n6a _ { n } = 5 n - 6
E) an=6n+5a _ { n } = 6 n + 5

Correct Answer

verifed

verified

Evaluate the sum.​ k=165k\sum _ { k = 1 } ^ { 6 } 5 k


A) 105
B) 97
C) 30
D) 28
E) 210

Correct Answer

verifed

verified

Write the first six terms of the sequence defined by the function. f(n) = 3n(n - 1)


A) 0,6,18,36,60,90
B) -6,0,18,36,60,90
C) 6,18,36,60,90,252
D) -6,-18,36,-60,-90,0
E) 6,18,36,60,90,126

Correct Answer

verifed

verified

Find the sum. i=153i+4\sum _ { i = 1 } ^ { 5 } - 3 i + 4


A) -14
B) -21
C) -25
D) -11
E) -45

Correct Answer

verifed

verified

Select the first five terms of the sequence defined recursively.​ a1=54,ak+1=ak2a _ { 1 } = 54 , a _ { k + 1 } = a _ { k } - 2


A) 56,58,60,62,6456,58,60,62,64
B) 52,58,50,62,6452,58,50,62,64
C) 56,52,60,48,6456,52,60,48,64
D) 54,58,50,62,4654,58,50,62,46
E) 54,52,50,48,4654,52,50,48,46

Correct Answer

verifed

verified

Select the first five terms of the sequence.(Assume that n begins with 1. ) ​ an=(15) na _ { n } = \left( \frac { 1 } { 5 } \right) ^ { n }


A) 15,110,115,1125,125\frac { 1 } { 5 } , \frac { 1 } { 10 } , \frac { 1 } { 15 } , \frac { 1 } { 125 } , \frac { 1 } { 25 }
B) 15,110,1125,120,13125\frac { 1 } { 5 } , \frac { 1 } { 10 } , \frac { 1 } { 125 } , \frac { 1 } { 20 } , \frac { 1 } { 3125 }
C) 15,125,1125,1625,13125\frac { 1 } { 5 } , \frac { 1 } { 25 } , \frac { 1 } { 125 } , \frac { 1 } { 625 } , \frac { 1 } { 3125 }
D) 15,110,115,120,125\frac { 1 } { 5 } , \frac { 1 } { 10 } , \frac { 1 } { 15 } , \frac { 1 } { 20 } , \frac { 1 } { 25 }
E) 1,15,125,1125,16251 , \frac { 1 } { 5 } , \frac { 1 } { 25 } , \frac { 1 } { 125 } , \frac { 1 } { 625 }

Correct Answer

verifed

verified

Find the next term of the sequence. 64,125,216,343,...


A) 524
B) 4,096
C) 512
D) 576
E) none of these

Correct Answer

verifed

verified

Use a calculator to find the sum.Round to four decimal places. k=4121k+2\sum _ { k = 4 } ^ { 12 } \frac { - 1 } { k + 2 }


A) -0.9682
B) -2.2516
C) -0.0714
D) -0.8968
E) -1.7516

Correct Answer

verifed

verified

Write the first five terms of the sequence defined recursively.Use the pattern to write the nth term of the sequence as a function of n.(Assume that n begins with 1. ) a1=8,ak+1=3aka _ { 1 } = - 8 , a _ { k + 1 } = - 3 a _ { k }


A) ak=(24) n;8,512,4096,32768,262144a _ { k } = ( 24 ) ^ { n } ; - 8 , - 512,4096 , - 32768,262144
B) an=8(3) n1;8,24,72,216,648a _ { n } = - 8 ( - 3 ) ^ { n - 1 } ; - 8,24 , - 72,216 , - 648
C) an=8n;8,16,24,32,40a _ { n } = - 8 n ; - 8 , - 16 , - 24 , - 32 , - 40
D) ak=(24) n1;8,512,4096,32768,262144a _ { k } = ( 24 ) ^ { n - 1 } ; - 8 , - 512,4096 , - 32768,262144
E) an=8(3) n;24,72,216,648,1944a _ { n } = - 8 ( - 3 ) ^ { n } ; 24 , - 72,216 , - 648,1944

Correct Answer

verifed

verified

​Simplify the factorial expression. 9!6!\frac { 9 ! } { 6 ! }


A) ​5040
B) ​504
C) ​3024
D) ​72
E) ​ 32\frac { 3 } { 2 }

Correct Answer

verifed

verified

Find the indicated partial sum of the series. i=12(13) i\sum _ { i = 1 } ^ { \infty } 2 \left( \frac { 1 } { 3 } \right) ^ { i } fourth partial sum


A) 281\frac { 2 } { 81 }
B) 24281\frac { 242 } { 81 }
C) 8081\frac { 80 } { 81 }
D) 2681\frac { 26 } { 81 }
E) 8281\frac { 82 } { 81 }

Correct Answer

verifed

verified

Use sigma notation to write the sum. 132+143++187\frac { 1 } { 3 \cdot 2 } + \frac { 1 } { 4 \cdot 3 } + \ldots + \frac { 1 } { 8 \cdot 7 }


A) n=161(n+2) !\sum _ { n = 1 } ^ { 6 } \frac { 1 } { ( n + 2 ) ! }
B) n=051(n+1) (n+2) \sum _ { n = 0 } ^ { 5 } \frac { 1 } { ( n + 1 ) ( n + 2 ) }
C) n=061n(n+1) \sum _ { n = 0 } ^ { 6 } \frac { 1 } { n ( n + 1 ) }
D) n=141(n+1) (n+2) \sum _ { n = 1 } ^ { 4 } \frac { 1 } { ( n + 1 ) ( n + 2 ) }
E) n=161(n+1) (n+2) \sum _ { n = 1 } ^ { 6 } \frac { 1 } { ( n + 1 ) ( n + 2 ) }

Correct Answer

verifed

verified

Assume that the sequence is defined recursively.Find the first three terms of the sequence.​ a1=3 and an+1=4an2a _ { 1 } = 3 \text { and } a _ { n + 1 } = 4 a _ { n } ^ { 2 }


A) 36
B) 5184
C) 3
D) 4
E) 32

Correct Answer

verifed

verified

Find the indicated term of the sequence. an=(1) n(4n2) a _ { n } = ( - 1 ) ^ { n } ( 4 n - 2 ) a27=a _ { 27 } = ?


A) 102
B) -106
C) -110
D) 6
E) -104

Correct Answer

verifed

verified

Showing 21 - 40 of 68

Related Exams

Show Answer